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SUMMARY

The turbulent flow in a conical diffuser represents the type of
turbulent boundary layer with poeitlve longitudinal p~eesure gradient.
In contrasljto the boundary layer problem, however, it is not neces-
sary that the pressure distributic)qalpng the limits of the boundary
ls+yer(along the axis of the t~ffuser) be given, since this distribu-
tion can be obtained from the commutation. This circumstance, together
with the greater simplicity of the problem as a whole, provides a use-
ful basis for the stu~y of the extension of the results of semiempiri-
cal theories to the case of motion with a positive pressure gradient.

In the first part of the pa-per,formulas are derived for the com-
putation of the velocity and.pressure distributions in the turbulent
flow alonG, and at right anpjl.esto, the axis of a diffuser of @mail
cone an@3, The problem is solved on the baeis of the following
assumptions:

1. The motion is assumed to take place along straight lines inter-
secting at the vertex of the diffuser cone.

2. The normal components of the turbulent strees tensor are as-
sumed isotropic. Their gradients along the diffuser are neglected by
comparison with the gradient of the static pressure.

3. In the equaticns of motion the hypothesis of the mixing length
(IWuxltl formula) is appl!.ed,and it is assumed that the curve of de-
pendence of the nondimensionalmixing le~th on the distance from the
wall is absolute.

k. In detemni.mirithe shape of this curve none of the existing
turbulence theories is taken as a basis, the assumption, common to all
turbulence theories, only being made that the first derivative of the

lReport No. 462, of the Central Aero+ydmdypamical Institute,
Moscow, 1939,
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mixing length with respect to the distance from the wall is the nondi-
mens5mal universal turbulence constant x. The shape of the mixi~
length curve is chosen as a cubic parabola from the bot@ary conditions
applicable to it.

5. To’obtain the solution of the equation ~f motion in finite form
there is ayplied the stepby–stey interpolation of’the values of the

.

inertia integral, the applicability of which is yroved.

6. At the walls of the diffuser the existence O: a lsminar sub-
layer is assumed, the thickness of which follows the known K&&n law.
It is shown that the assumption of radial motion in this sublayer is
fundenentally inapplicable. In obtaining the velocity distribution in
the sublayer, the assumption is made of the continuity of the curve of
friction distribution YLnpassing through the boundary of the sublayer.

7. The resistance fofiula obtained for the diffuser is found to k
absolutely identi.ccdwith that for the ppe,

In the second part of the paper tests are described on the meas-
urement of the velocity and pressure Wstribution in two conical dif-
fusers with
between the

1. The
only with a
the ease if
tion.

2. The

an@es of 1° and 2°) and a deta].ledcomparison is made
experimental and the theoretical results. 1: :S found that:

assumption of the radial character of the flow is satisfied
certain, though large, degree of approximation as should h
viscous friction exists simultaneouslywith turbulent fric-

obtained formula for the velocity distribution agrees well
with the experimer~talresults.

~. The increase computed (on the basis of the derived resistance
formula with the values of the universal constants taken from tests on
pipes) in statj.cyressure along the tii’ilmerdeviates lit~le from the
test results.

In the third part OS the ~a~er a ~irszj ~-eryzu~prcxtmte: at-
tempt is made at estimating semieqiricaily Vlie dei~ia~ion Of the true
motion from the radial jjatternassumed. The &“-%lj”9i.Sis kase?d oc the

assunytion that the true motion may to a first approximation be zs-
suneciradial but e~mtimg froE mother ficttticus source. gl~

latter, for the region near the diffuser ezis: is computed by two
different methods. The ~ooo agree~eritof *Le res@~s of these com-

putations shows that the assumption is $uszified. The asmmp%ioa of
the diapleced source in ccmputing ‘de ckiracteristics of the growth
of ‘de static pregmxre along zhe tiffuser gives complete agreement
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with the experiment
the -disagreementis
for tile2° ,diffuser

for the 1° diffuser, while for the 2° diffuser
greater thm-ti-thout the assumption. The result
evj.dentlyis explained by the fact that the giiadi-

ent’of the normal component of the turrbulent-stresses wqs not taken
into account together with th~ pressure gradient. This correction,
which is negligible for the 1 diffuser, may have an appreciable effect
in the case OR the 2° diffuser,

INTR03XJCTIQN

The chief experimeptd source on which at the present time the so-
called setiempirical theories of turbulence are based is the fully
develoyeilturbulent flow between two parallel planes or in a stra~.flht
cyl.fndmcal pipe. The reason fcr such ,anexclusive role played by
these twc ty~es of flow lies in the circumstance that these are the
simplest ‘b~pesof flow as rek~ard~~he:Lrlcjneticand dynamic relations.
In the first @ace, both for the case of tlow between ~arallel walls
ard for the circular pi~~ethere is no need to consider the change in
the mean velocity and f’r:ct~onprofiles along the axis of tlieflow
since neither the velocities nor tlie ~ric~lcmal atresse~ along the flow
~irectlon chqe ‘n value. In the second place, because of’the absence
of inertia forcos the yrof;le of the shear stresses transverse to the
~low direction is found Lo be linear. This factjis not a consequence
Of CUL.]~yp~t,}?esi~regarding the ~~~bulenoe but follows from the i“u.,nda--
mental (~quo,tionof’mction (Reynolds), Ffinally;for these s.T.plP cases

the equation of mot~on permits the experimental computat:,onof the
shear stress at the wall by measur~ng the tiop in static ~ressure along
the flm: as may be done with very graat accuracy. The latter circum–
stance very greatly simplifies the experimental confirmation of the
theoretical resistance laws.

‘Thecareful C.~~rA~r~~.3~L investigation Of the @hCVe tWO cases Of
turbui.entflow has led to a completely satisfactor~ application for
p~ac>ical purposes of the semiempirical turbulence theories (Prand.tl,
Karman, Mattioli). T& empirical nature of these theories lies, as is
known, in the presence of tha experimental cons%mts X (the absolute
turbulence constant) and a (the nonriiuinslonalthickness of the lam-
inen?sub]a~er at the wall) obtained in evaj.uatilyjthe test data on the
relation ‘w?tweenthe friction at the wall and the Reynolds.number from
the formulas obtained on the basj.sof these theories.

At the present time i~ may be confidently asserted that for the
above–mentioned simplest cases of flow the constanqj md. absoluteness
of these constants are facts that have been repeatedly verij?~ed. How-
ever, it still remains very uncertain to “,~hatexten~ the absoluteness
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of these constants is maintained in passj.ngto other cases of motion,
in particular to motion, not with a negative static pressure Gradient
(as in the pipe and channel), but with a positive gradient - that is,
to those cases characterized by the existence of inertia forces. As
is kmo~m, in these cases both the velocity and the frictional stress
profiles undergo radical changes. Such a case is that; for example,
of the turbulent motion in the boundary layer at the upper surface of
a wing. Notwithstandj.~ the undoubted urgency of the solution of the
problem of the wing bounda~ layer this type of motion apgears very un-
suitable for the purposes of generalizing the existing setiempirical
turbulence theorie~. Thus, the fractional stress alo~ the wing con-
tom varies according to a law which is connected with the velocity
di$tr$bution law by a very complicated integro-differentialcondition
(Karman).

In addition to the fact that this condition on evaluating the test
data requires the carrying out of ~raphical differentiation of the ex—
perimental curveE, a ~rocedure which introduces an element of arbitrar-
iness in the case of the flow about a wtng, there, strictly speaking:
does not exist a determinate problem s:nc,ethe static pressure distri-
bution over the wing profile Dust in all cases be obtained from exper--
iment. Thus the “tur?.mlent”character of the phenomenon in the
bounda~ layer is very mqch com~iicated by accessory circumstances of
the external problem. For this reason it was considered des~rable to
obtain a type of flow which, while possessing all the properties asso-
cj.atedwith a variable positive pressure gradientl wa~ most free from
various external complicating circumstances.

Such a type of motion, that is, a somewhat exaggerated model of
the boundary layer of a wing, may be represented &y the stea~~ flow in
a stra~ght—walled or conical diffuser. Since in this case the entire
region within the diffuser is filled with the “boundary layer,” the
chief difficulty of the external problem - namely, the incompleteness
of the equations of motion as regards the external conditions --droys
out, The equations obtained are determinate both for tinevelocity and the
pressure &lsbributlons. Moreover, by introducing a certain assumption,
for small divergence angles 04~ the dl:fuser there is the possibility d?

p the character of the change ingreatl~ s~mplifying the investigation o.
the values of the velocities, Yriction, aridpressures alo~ the flow by
entirely avoiding tke operations associated with graphical differentia-
tion. By-investigating the p~ssibiliti;of generalizing the seniempirical
theory to the case of the diffuser it is possible then -k p:ccee~ Cn e.
surer ks:sto the bourdary la;7erstudy. In select~,ngthe conical @.f-
fuser for the present investigat~cm the following facts were considered
because of convenience in testi..ng:
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1. To obtain steady turbulence in the diffuser, it is necessary to
have an initial inlet length ahead or it. It was convenient for this
Purpose to use the cylindricalpipe, already investigated in a previous
paper (reference 1), which mEW be considered as a “diffuser of zero
divergence.”

2. In investigating a straight-walled diffuser with an initial im-
let length, it ie necessary to make the distance between its lateral
parallel walls as large as Bossible in order to avoid the effect of in-
creasing bound.a~ l~er on the ~low in the axial pl~e. A large dis--
tance between the lateral walls would give sUch a large diffuser cross
section, however, that the air intake apparatus at disposal would
be unable to produce a flow with sufflcient~ large Reynolds nuniber.

The present paper is divided into three parts. In the first Tart
an attempt is made to Give a tluwretical analysis of the turbulent flow
in a ~onical diffuser w“.thsmeJl divergence angle. In the second part
the procedure is described: the results of the tests conducted on coni-
cal diffu6ers with cone angles @ 1° and 2° are presented, and an
exhaustive Comparison of the e~eri~ental results with the theory pre-
sented in the first part is’given. In the third part an approximate
method is Given for estimatmg the deviation of the true motion from
the radial pattern assumed in the first part.

I. THEOIZZTIC,ALANAIYSIS OF TEE TURBIJIJ3NTFLCliIN A COIYICALDI~ZFIJSER

1. Fundamental Equations of Motion

It will be assumed that a fully turbulent flow enters from a

straigh$ cylindr~Loal pipe of rauus R into a conical diffuser with
angle o between the axis end the generator (fig. 1). To Qwestigate
this case, it is convenient to assume a spherical system of coordinates”
with the pole at the vertex of the cone O and with the pt?laraxis
directed along the axis of the sine. Thue the coordinates of any point
M within the diffuser will be the distance from the pole r and two
angles, namely, O between the straight.3ine co~ecting the Toint with
the pole and the polar axis, and q between the perpendicular dropped
from the point M on the _polarexis and any fixed plane containing the
polar axis.

The hydrodynamic equations (Euler) in the chosen coord@ates @ave,
as is known, for the steady.motiem the following fozn:
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and the equation of

&r 1
——
br ‘r

con.tinuit.y

where v~ is the component of the velocity directed alcn~ tinestraight

line passing thr~~h the pole and V,j and vj9 are the velocit: com-
ponents directed along the tan~ents to the arcs ,~ea.surl:gthe ccn-re-
spondjn,~angles; p is the s~,ek:cpressuue in the flcvj and p the
density of l~kefluid. From T’”eprc.~din~ e<uat:or.sis set up the equa-
tion Gi’ Re:TriOldS for which ~~ti.r,:csf?.as usual, the Velocity and pressure
are broken iiownirltoa mean VZJ...S~,~-threspect TC t;.meand a fluctua-
tion about the mean:

-. 1
/ ‘r = “Tr+ ~’r

.

Equations (1) }~[ththe aid of tihecontinuity equation may be trans-
formed into the following;
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r
= -- 1..A

pr

1 ap=— -— .
pr sin O &

By substituting (3), averaging
ing that accordinG to the averaging

—.—. .
v~vfl= ~$-vfi

with respect to time and remember-
laws:

.—
t

+ vi.’v.~

-tv = O, etc.

the three equations of motion are obtained:
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a(;ra)
— +

dr

+

+

x

+

.,.

--
$--2 .- ;2

1+l_._____ WJJ + 3 ‘+ ‘_ 9 ~c)t 79

r &+ r sin O r r

and the continuity equation

r r
-8

where



- NACA TM No. 1137 9

.,=

are the tangential and

u-.
,2

T rr .-pvr
]

1
-—.

‘w ‘-PVV
the normal components of ‘thestress tensor.

Since the Rej-noldseouatlons were derived from the Euler equations,
that is, equationa that do n~t .Iakethe viscosity into account, it is
safe to assme that the tan;jenial components of the stress tensor

‘@ ‘ ‘w’ and T
@

represent the sum of the viscous and turbulence parts of ths stresses,
because the viscous stresses, b;-analo&v with the turbulence stresses,
are also a consequence of the averaging with resFect to time of the ao-
tual molecular motion.

H the analogous ccuponents of’the viscous stresses are substituted
(expressed In syherical coordinates in terms of the veloc~ty Gradients)
in the obtained equations in place of the tangential components of the
turbulence stresses, and if isotropy of the normal
assumed, the well-known equations of Nswier-Stokes

As is known, the system of Reynolds equations
stnce, for determining the ten unknown functions;

viscous stresses IS
are obtained.

is not determinate
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only four equations are available. Some Sim~Jlif~i.~&6sUm@ions IXW
will be introduced. It will be &afe to assume that the average motion
in the diffuser is one with axial symmetry; that is, the velocity com--
ponent Tq and all derivatives with respect to q are equal to zero.

This assumption immediately removes the third equation from considera-
tion and .s!.mplifiesthe others. Then, introduce the less obvious
assumption that the mean mot~on is along the straight lines passing
through the pole. This, of course, is a very strong assumption, approx—
hnately satist’iedevidently only for small divergence az@es of the
diffuser, and, no doubt,
be presented later). By

% = 0“ In this case it

rogujring experimental confirmation (which will
this assumption it may be considered that

follows that:

.—
dvr &-r* laQ

2Yr— —=--
?k+ r Q &

Introduce the assumption of isctm~y o~ the normal components of
the turbulent stresses, that is, that the equations are approximately
satisfied

Then there is obtained from the first equation, letting for si?nplicity

‘r
=uand’rti=T

2(=–T )
au 21.12 1

2u—+—=– -
rr 1 ~(-rsin 79)

+———
br r P &7 pr sin 3 2A
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where ~ - Trr represents some total pressure which at the diffuser
wall, where the fluctuations vanish, is equal to the static. Setting
~-rm.pl, and assuming in view of the mallnese of the angles
sin O 6s 3 Gives:

(4)

The second equation containi& the gvadient of ~ transverse to
the dii’ftmeris excluded entirely from consideration, This equation is
obtained by taking the sum of the projections of all forces acting on
the fluid in the direction per~endicular to the mean radial motion.
Therefore in introducing the’’assumptionof the radial character of the
motion, this ec~uatiohsuffers to a considerably greater degree than the
first, obtained from consideri~q the yro~ections of all the forces in

, the direction of the initiai motJon. It must be supposed that the
neglected terms in the second equation, due to the assumption of radial
motion, which contain the component Vd are of the same order of mag-

?~~
nitude as the remaining terms containing — and the difference

39

‘w -’790 “ Thue the retention of the second equation must be considered
as unsuitable and even harmful. In what follows it will be seen that
the remaining equations are entirely sufficient for solving the problem
for the assumptions made.

The continuity equation under the a~sumption of axial $ymmetxy and
radial character of the mean motion becomes:

au
–+~=o
& r

This equation may be easily integrated with respect to r and its gen-
eral inteGral will he:

t(o)
u=—

9
(>)

/

where t is an arbitrary function of O only. Expression (5) shows

II



12 NACA TM No. 1137

.-..
that under these assumptions-~imilar velocity profiles should be ob”tiimd
over the entire leng~ of the diffuser and that along each radial line of
flow the velocity varies in the same manner as for the motion of an ideal
fluid - that is, inversely proportional to the square of the &istance
from the source.

Substituting equation (5) in the initial equation (4) results in
the following equation after combining similar’terms and mu.ltiplyingby

r5:

From the equation obtained two very impcrtant conclusions can be drawn
on the change in pressure and intensity of friction along the diffuser.
Since the left side of tineequation doee not depend on r, it must be
assumed that the right side likewise is ir@eTendent of r; !chie

-thecase only if ~pl/& is inversely proportional to r5 end

inversely proportional to r4.

By setting

where G
the above

The first

and f according to what
equation of motion may be

2t2=G-

and f = ~r4

was sa!.dabove
written as the

~ d(ffl)

do not depend

can be

T i6

(6)

on r,
usual one:

(7)

expression in (6) mayeasily be integrated with respect to r.
There is obtained

P1 ( 1
- Iho =

1-~pG —-=
r4 ~ )

o

(8)
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where, ,PIO ip:th~,abe~lute,v~l:up,q;-the’Generalized.ptimui-e at any
point of the flow havigg”~g &o’&@&i++: :~~~,~~ axi?resi~om~~) ~ivi~:........!
the law of variation of this pressure alo~’’the diffuber, together with
the law of drop in velocity (5), is very suitable for the experimental
checking of the fundamental assumption of radial flow. Use will be made
of this expression later. ..

,,Itwas,assumed that,the,pressure. pl is the difference between the
static pressure and the normal turbulent stress:> ,. ,

:, ,. /.
:.. . .,:.:,

pl=~-7rr
..

,,
.“..” ‘,.,..-);,... .

Thus the magnitude G, etrictly speaking, 3s determined as

,---. ...J.

It is asmmed that the gradient along r of Trr is

son with the gradient of the pressure ‘p. This makes
consider

In studying the bounda~~ layer the assumption is

,,.

sroallby compari-

it possible to

usually made that
the static pressure does not vary over the thicbess of the bqundarg
layer. This is excellently conflrmsd by experiment. Applying an analogous
assumption to this case, let

a~ ~

r-$=, ,

This at once leads to the rewlt that
tion (7) by O Wd integrating from
variable 4 gives ‘

p+
2

1
t%9d79=

o

G = conetant.
3 = O (axis of’

.,

Wtiplyl- equa-
diffuser) to a
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Tr&R’oti to nondimensional wiriabl-is-.fiolrwhich purpoee the single5.sre-
f.erra,d*O its maximum value $~j\lP,tti~

/“J~- .. !;. .-. !-.-, ,. ..,, . .,. .
,. ?S-’ :

-5
g-

.:,> ..- ..J. . .

The velocitj u will’be &Merre d

at the wall v = ~fl where.,.- 0

.. .

to the

T is
o

. .... -. !,

., ‘$ .“

“dJ&nic velocity of fr.!!ction”

the frictional intensity at

the wall, and then u/v, = ~. Since u = t/r2 and

= bcp is-obtained where b = J’v. , .t. Substituting in the last ex-
pression yields

,,=.. .. ,.

(g)
‘.

On substituting in the second term O? the right side h = ~“ fo@,

there 1s obtained the generalized law of the distribution of the fric-
tional stress transverse to the diffuser:

(lo)

Consider this expression. For ~ = O on the diffuser axis there
obtains: on applying the rule of L1Hos~ita2,

. .

c1 qFE x 230
= lim —— = o
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At the diffuser wall for g = 1, it ie seen thAt f = f. and

which gives the relation between the integrals of the inertia forces, “
the fr~ctional forces, and the forces arising frointhe drop in static
pressure.

In order to estimate the shape of the cwe of friction distribu-
tion across the diffuser for

~ b_o‘erivative & f
Wi11

0
I’userwall. Differentiating

vari&s signs of the pressure gradient, the

be feud for ! =

(10) with respect

G2r2q2._–—
L 2b2 kz ~

1, that is, at the dif-

to f, gives:

E
o- -1

Substituting g = 1 and beeurin~in mind that at the

For not too emall divergence an@es of the diffuser,

(12)

wall q = O yields

the sim of the
_itude in Parenthesis usually is entirely determined by % first
term. ThusJ the sign of the derivative of the curve of fxiction dis-
tribution will be negative foy G > O; that is, for positive pressure
gradient and the curve of friction distribution f,/fo= f(~) wiil have
the form shown on figure 2. As 00 approached zeYo, that is, in

passing from the diffuser to the straight pipe, there ie obtained from
(10) beai”ingin mind (11):
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that is, a linear distribution of the frictional stress. This straj.ght
l~ne, corresponding to the negative pressure gradient, ie also shown in
figure 2.

It is natural to assume that the method explained is suitakle also
for considering the motion in a conve@.nf: pip3 where $0 < 0. In this

case the point of intersection of the radial lines of flow lies on tiie
other side of the sect~on considered. Since r i.nthis case wi~J.De
reckoned opposite the flow direction, it follcws that

$>0

&

although the pressure drops along the flow. Thus for the converging

(‘ r “)
piye on the bas5.sof (12), ~ — wil~ t)epositive for E = 1

f. /]

(fig. 2).

It is not difficult to conjecture, on the basj.sof tineabove dis-
cussion, that a diffuser may be imagined for which there is nc change
in pressure along the flow; that is, G = O. The divergence argl.cof
such a diffuser will be determined.on the basis of (ii) ael

K. K. ~e~ae~:skyj ~.nhis paper cm the bcunda~~-iayer of a wing
(reference 2), has shcwn that Yor the externa~ prob~em in the absence
of a presmme gradient.along the s.urttaceof tinebod~ (flat plate) the
derivative of the c-m~e of frict~on distr~.’out~on~n the direction pez=-
pendicular to the surface at the wall is equal to zero. Ii is inter-
esti~ that for the &i.ffuserthis assumption is not found to be correct.
According to expression (12) the derivative of the friction distribution
at the wall in the absence of a pressure gradient alonG the diffuser —
that is, for G = O - is equal to

—.

%uch motion represents the boundary iayer of an infinitely thin
flat plate set at zero angle of attack.
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The corresponding curve is shown on figure 2.

Consider what the shape of the curve of friction distribution will
be near the diffuser a@.s, that is, for ~ = O. The firet derivative
of’the curve ~f friction distribution for ~ = O is obtained from (12)
on substituti,~ ~ = O. Evaluating the indeterminate expression

gives:

On substituting :n (11) there is obtained

where” r.pmis the value of the nondimensj.onalvelocity u/vif on the

diffuser axis. Thus, the value of the derivative of the curve of fric~
tioq distribution on the diffuser axis and, of couree, also in the
general case is not equal to zero. In the boundary layer, according

,E:, to the ipve~tigaticm of I?edyaevsky,this ~erivatj.ve!s equal to zero.
!Thissums up the conclusions which may be drawn from the incomplete

I equations of motion on the basis of the assumed hypotheses.
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In order to obtain the profile of the velocity distribution across
the diffuser snl the resistance law, it is necessary to render the fun-
damental equation (9) determinate b,yconnecting in some way the general-
ized frictional stress f = Tr4 with the remaj.ningvariables. ‘?.’hie,ss
usual, is attained by introducing some semiempirical assumption with re-
gard to the turbulence.

It ia possible, of course, to take any one of the semiempir>cal
turbulence theories available at,the present time (Prandtl,Karman,
Mattioli) and generalize it to the case of the friction in a diffuser.
This generalization to a first approximation (eviilentlyquite satis-
tory for small divergence angles) mq~ be brou~ht about by simply passing
from cylintiical coordinates to polar. At firet this method was followd
in an attempt to generalize the theory Of Mattioli. The unusual com-
plexity, however! in the eolution of the differential equation obtained,
the imTossib:litj:of obtaining the veloc~.typrofile in a finite form
suitable fm practical application:1 and BO forth> made it necessary to
drGy this method and seek another.

Still another consideration led to this resolve. All empirical
theories without exception ~re,built on a very shaky physical basis.
Neither the assum@ion of K&man on the similarity of the fields of
velocity fluctuations nor the assumption of Mattioli on the transport
of momentum can at the present time be eupported by Wy but those
authors. It is very significant that at the present time papendevoted
to the analy$is and improvement of these theories no longer ayTear. All
this indicates that interest in these theories has dropped sharplj and
that they are now in the passing stage. On the basic of what has been
sa:(?-it Tiu.ybe asked whether it is worth the effort, by overcomin~ the
huge computational difficulties, to generalize any of the theories men-
tioned to the case of flow in a diffuser, Even after having overcome
all the computational difficulties and having obtained excellent agree-
ment of tileresults of computation with experiment, no progress in
learning the mechanism of the turbulent notion will have been made, for
it would be verjrdtfficult to establish on what grounds the good re-
sults were obtained: whether on account of the correctness of the
Generalized Bemiempirical thecry or on account of the fact that the
parti.aularnature of the flow in the diffuser was already sufficiently
taken into account by the incomplete equation of moiicm. Ii WGUld)
however, be a mistake to think that the semiempirical theories ?f

‘As is lmown, even for the case of flow 5.na yipe, the theory Gf
Mattioli leads to incomputable ana~ytical quadretures.
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. turbulence which have been mentiongd have contributed absolutely nothing
to the ~derst~d$ng of the physical picture of the phenomenon. It is
sufficient to recall that all these theories lead to the same resistanc8
law for the etraight pipe:

1—- =

/7

To
(where Cf == , ~=

‘m

p –2—

(14)

R%
-— , R is the radius of the pipe, ~ =d
v

A are universal constants), which is excellently confirmed by numerous
tests. ThlS leadi3to the su_ppOsit~LoX’1 that all these theorj.esCOntain
some common element that correctly represents the phenomenon. In order
to explain what constitutes this common element, it is recalled that
PranAtl connected the frictional shear with the derivative of the mean
velocitiJby means of the relation

2
—.

T=- p U$v’
()

du ‘= – plz -—
m

(15

,“
where 1, a linear magnitude denoted by Trandtl as the “mixing length”
(Mi’schvmgsweg), is a function of the distance y from the wall of the
pipe or channel. From its meanipg 1 ehould become zero at the wall
where no mixing can take place. I?randtlmade the veqy simple and ele-
gant a$mumption that follows from the possibility of developing the
function Z = z(y) into a series at the wall; namely, he assumed that
to a first approximation

z . Xy (16)

where x, a universal turbulence constantj,is the first derivative of
the mixing length with respect to y at the wa~~~ that is, for Y = O

()
..

x= ‘z
G y=~

(17)
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As iS known, the assumption (15) led Pra.ndtlto the “,pniversalvelOcitY
profile” ati’to the resistance law (14), With the aid of the latter
the magnitu& of X was found and its absolute character established.

Since from other theories (K&&n, Mattioli) the s&e formula was
obtained, it is to be expected that for these theories condition (17)
iS likewise satisfied .-which statement will be proved.

As is known, Y&m&n obtains a relation connecting the mixing length
with the derivatives of the velocity in the form:

1
u’

=x—= ~~ P:
u“ @’

and the velocity distribution in the form:

‘?m-~-= - ;[log(l - /n) + <-Z]

By fin~ind the derivative q’ and (p” and substituting in the expres-
sion for t there is obtained

Differentiatingwith respect to ~ gives

By substitutin~ ! = 1 and remembering that d~ = d(l -y/R) = – dy/R
there is obtained

()
al ‘

=x
.G Y=o

as was to be proved.
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To @rify e~ression (17) according to the theory of’Mattiolij
.-. eqi.latdcki[15) is solvet for Z and differentiated with res~ect to y,

+ei%

,-1 -1

Introducing the variables q ana ~ Jields:

‘ (I1 rl _ ~ /’1 ‘x ~
—=. I ~y(-,-)n
V ‘ (p’/~ ‘?

I

As is known, the theory of Mattiolj.for large Reynchis numbers leads to
the following relations:

Making use of

t<b,

Since for the
numbers), the

these relations gives, from the expression for d.1/dy,

case where the viscosity‘isneglected (large Reynolds
velocity at the wall approaches w ,

LA
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as was to be proved.

It is thus evident that the fundamental element common ‘Gothe fore-
going theories is the fact that tilefirst derivative of the curve of
the mixing length against the di~tance from the wall has at the wall.,
or more accurately, at the e&=e of the lamhar lwer, a constant abm--
lute value X independent of any variables.

Since the resistance formula, wh5ch is a conse~-uenceof this
assum~tion, is in excellent ~reement with the experiment, it may he
considt,redthat also for the diffuser and, in generzl, for any tur-bulent
flow near the wall

(
d~ \,

,p
=x = constant

y=o

‘“OUSexperiw?nta.1investigators (D”6-nch~Nilcuratbse,Moreover, nume.
Frietsche) have established Lwo further s<gm”ficant fac’ts: (1) the

1 /z)
curve — = f

R (
is found to be alnos! absolute near the wall for

R /’

the most varied cases of flow and (2) on the axis of the channel or Tipe

1or on the edge of the boundary-layer - = constant ~ 0.14.
R

On the basis of all that has been said, it is not necessary in the
present paper to make use of any developed hypothesis of turlmlence ex–
cept the formuia of Prandtl (15) but a method will ‘beused that permit6
obtaining the simplest and clearest results.
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Up to now it has been understood that T repreeeti%s’:thetotid. ‘
frictionQ stress: -

_

T = ‘lem + ‘turb

As earlier investigations (references1, 3, and 4) have shown, it may ke
considered that for practical Reynolds numbers the effect of the viscous J
friction is ne@i@ble in comparison with the tukbulent friction. ‘j?or
this reason; in what”followsj by T will be understood only its turbu-
lent part.

The formula of’I&andtl will be reduced to a form’independent of r.
On assuming, according to the foregoing discussion, the ratio Z/R
(where R is the local radius of the diffuser cross section, R = r$n)

independent of r, to be a“function of O , from equation (J5) there is
obtained

It is seen that on the basis of the assumption of the absoluteness of “th&
-1

L
curve - = f(~) it was found from the fomm.la of Prandtl that the tur-

R
bulent part of the frictional stress, in the same manner as the total
frictional stress, should be inversely proportional to r .

The f-a of Praridtlis reduced to”xiondimensicnalform by letti.%
t = bqx

aq
where rpt= -- . Subetitutlrg the expression obtained in the fundamen--

a!
tal equation of motion in the form of equation (9).gives

-.. .
ml

,.,.

(1(3)“

.. . .... .. . ... . .. ...... . A III..—
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It will be neoeseary to obtain ()
1.

F f(jj) in the form of a power
.;.”

function .

1
-=a~n+m
R

(19)

where the unknown constants a, m, sad n are obtained from the fom-
Going Consideration:

(a) tor g = 1 (at the wall) ~.= O
R

By mak~ use of the first condition there is obtained

.a+m= o (I)

Differentiating (19) ~d su?)stit~ti~ ~ = 1 accordi~ to the secmd
condition gives

According to the third condition,

m= 0.14 (III)
,.

x x
Therefore, a=.+,14 ~.d n=--.-=. Since the value M X is

a 0.14

usually of the order 0$’ 0,43 to 0.44 (according to the msistapce law
derived for the pipe), the approximate result 1s:
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I

1
and the required function - = f(<) will be a cllbicyarabcla

R

1-=;(d)
R

By substituting the obtained relation in $liefundamental equation (18)
there is obtained a differential equation the solution of which should
give q=q (E), that is’;the curve of velocity distribution:

(a)

~. Velucity Distribution

Integration of the obtained equation in finite folm.is not possible.
For this reason it is necessary to proceed to an approximate integration.
By integrating the inertia integral on the left in the form of a powar
relation and setting

t

it is asstied that

J
Ii’= al + ml~ (22)

‘T’heconstants al and ml will be determined from the boundary condi-
tions for J. For 5 = 0,

for~=l . .
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1

J=
[

q=~d~ = constant = Jo

o

Then

‘%2.1al = -9— Qm2. —.[m’” J” 2

al + ml = Jo
)

and

~m2

(

~n2

J=— Jo-—
)

~k
2+ 2“

It is practically more convenient in the preceding expressions to pass
from the universal velocities

which are directly measured in
sion by q; and ~tting

I=L=

%2

q end ~ to the nondimensional

the test8. On dividi~ the above expres-

there is obtained

Substituting in equation (21) the expression for I and solving for the
first derivative of’the nondimensional velocity yields
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‘.. ”., !“

According to expresaton (11)
.

“. . .“

Substituting this expression in equation (23) yields

.,.

The expression flo~% “-23.),

in the di~fuser, since it.takes

the dynamic parameters ~ and

Let
,,

(23)1

,.,,,

....

(24)

. .
c~mplete~ characterizes the flow state

,,
accwnt both 0$ the geometric (-9.) and

10 depending on the Reynolds number.

3oqA.J(l- 21.) = D

and denote this nondimensional magnitude as the “diffuser parameter.”
It+is net.di~fflc~t to see that for the “zero diffuser” (pipe) D = 0.
For the case of flow of an ideal fluid in a diffuser, that is, when the
velocity does not depend”on ~ ~d at eaoh.section u = ~,

.-.
1’

‘The minus sign before the square root is chosen from the consider-
ation that over the entire range of variation of g the derivative,,. .!
Lip

is lese than zero.
z

IIllm—m— ■mmmmml lmm I I Inm=m,,. I , s,—,-.. . —. ... . .. ——.— —
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In the case of

where in computing

a.diffuser..anda

Ic the flmction

ways less than unity, the result is

10<

NACA TM No. 1137

converging pipe with turbulent flow

u— enter}ng the integral is al-
%

1

5

for which reason D > 0 for the diffuser and D < 0 for the convergent
pipe (flo<O). Integrating (24) with respect to ~ gives

(25)

Nothing, as yet, has been said regarding the value of the exponent
k !n the integration of the inertia integral. It is convenient to pro-
ceed as fellows: Assuming any value of k, to compute the integral

(25); then, having the relation & = f(?), to”set up the values

I = f(E) and choose a new value for k in better agreement with the
foregoing relation. By repeating this process several times it is not
difficult to arrive at a value of k which best satisfies both expres-
sion (25) and the approximation I = f(~). By this procedure, however,
it is necessa~ to compute the integral (25) graphically, since finite
computation is possible only for a few values of k.

In attempting to obtain tilevelocity distribution formula in finite

form, it was assumed that k = ~ which, as will be seen later, is in

good agreement with all the con~itions discussed. Fork=: the in-

tegral (25) is obtained in finite formby the substitution

leading to the integral of a rational fraction. YJithoutgoing into de-
tail, this gives the final result:
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{
(x+l)(73Tz -l..~_ 2/~ --1 x

%-9=$1063
[(x-l)”(y D+l+l) ‘ /2D+l

/

ZR-i- tas 1}
,,

,Z67 .
.,.

(26)

.. . . . - .,. .

The proposed method of approxkuating tie ~xing len@h function by
a cubical parabola.givee & very simple law of velocity distributf6n for
the straight pipe. $ettip# inexpreasion (25) D = O w@cfrcqying out
the inteCr@ioq gives tor the pipe ‘

(27)

. . -
>,

This very simple formula~ as will be shown in part II, is excellently
verified by experiment.

It is of interest that the absolute character (independentof the
Reynolds nuniber)of the velocity distribution profile in the form

Pm-Q”

in the case of the pipe does not hold
the “diffuser parameter” depending on
velocity distribution (formula (26)),

f(~)

for the’diffuser,for which case
the Reynolds number enters the

k. Resistance Law

To make use of the foregoing de~ived formula for the velocity dis-
tribution in the diffuser} it
paranwter

D=

E@,

that is, t~e values 10 and

is necesseq to be given the di$f~se$

$o~2(l -21.)

of the-inentia integral

.-. ..-. .—--- .. . . .. ... . . . . - .- --—.——
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will be known, since the velocity profile is lcn&n. It.is Buggested
that an approximate value for 10 first be assumed and then, having
obtained the profile (26), to correct this value. Generally the succe~
eive approximations converge very rapidly, since the values of 10

ilep~d Iittleon the shape of the velocity pr~file.

I% ’remains,for computing D, %to assume the value ~’= ~ , which
*

must be associated with some characteristic of the flow, for exarcple,
the Reynolds number. Thi8 meana that it is necesswy to find the re-
sistance law.

To obtain the resistance laws the solution obtained must be con-
nected with the laminar layer mar the wall. Since in the lau.inarlayer
only the effect of the viscosity should be assumed.,cmsider where these
equations lead to if the viscosity friction is considered instead of the
turbfient friction.

By retaining for the present the assumption of,radial flow (V = O)
also for the case of the laminar eublayer it is found that the intensity
of the leminar frict~on is exyressed

~ du
71snl=+r&~

as

=-l+ fi’i’

r N
(28)

The assumption of radial flow leads to the result that the laarlnari’ric-
tion, in ccntrast to the hWbUkII~, varies inversel~’proportionally to
the thfrd, and not the fourth, power of r.

The equations of the laminar motion on the assumption of radial
flow, on the basis of ~he fundamental equation5 and the above expression
for the frzction,become

2t2
/

~ ~~ V dzt-~ dt
—=- -—P ——
1“5 p & ~4 -d~z 14 z.
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On eliminating the presmre p hy the method of cross differentiation

1
.. thqre is o~tained’after dividing by -.: - “

rg

.In the foregoing expression the ?ight side does not depend on r: whereas
the left side is inversely proportional to r. This absl~-~di@clearly
shows that the viscous fluid cannot flow radially in a conical diffuser.
With this result, it becomes evident thsitradial flow in a turbulent
fluid is, strictly spedsin~, impossible because the internal friction in
a tu~%ulent flem is the sum @f the tlrrbulentand the viscous friction.
It is not difficult to uee, however, that the deviation from rsd.jality
in the main bo&J of the flow should he negligible, being of’the ctame
order of smallness as the proyortian of the viscous friction is to the
total friclz!on. In other word~, ‘-,het’lowin the diffuser may he thou@t
of as a strictly Ymiilsl,“:me ly Lu?:k.llcnt”flow with superposed small
nonradial disturbnnce:~arisin.qf-innthe vificosit,y.

The grenimst devi:~l-,ionfroiiradialit,yshould he expected near the
wall where the proportion of the viscous friction is part~cularl~ large.
In order to form a very approximate picture of the flow In the Iamhar
suhlayer the followin~:reasoning is given. It has been seen that for
the rcdie,lflo~rassumption valid in the main body of the flow the total
fiaictionshould, on the basis of the Reynolds equations vary iny-emely

proportionally to r4. On the other hand, on the ??asisof the I?andt.1
foimula and the assumpt,5.onof universalit~ of the nor~d.lncn~icwmlm.!xin~
length curve the puyely t~~rbulentpart of I-,hofr~ction should Iike’vise. . 4
be inversely proportional to r- . Th5s justifies the assumption that
the la~inar part of the f~iction should have the same property w.~ththe
same degree of accuracy. With the o%ject of o%taininq e swoo+.h~ia?fil.~
of the friction distribl~tion,5t fs permissible to extend t,hiapj-o~jerty
also to the purely Icmfinarla,yerzthat is, ascume tlmt ,.

In this way, the assumption mile in solvin~ the problem of the tui-hulent
flow in a straight pipe is extended. Tt was assumed there that at the
wall there is a viscous ].ayerthe motion in which is subject to the
equations of a viscous fluid.,hut,the value of the friction ~b the wall,
entering as a bounda~~ condition, is determined by tineturbulence law
(resistance formula). Here, by extending the foregoing assumption,

-- .--——---------- #, .. . . .——.
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it is Considered that not orilythe value of the friction at the wall but
also the law of the distribution of the friction along the diffuser is
determined by the main turbulent part of the flow.

In the laminar layer, the intensity of the frictional stress in
terms of the derivatives of thervelocity’in spherical coordinate~ is
expressed:

.

On substituting, on the basis of the above assumption,
‘lam

‘lsm= ~– J
it is found that for the obtained expression to be independent of r,
it is necessary that in the laminar layer the velocity components u

and v be inversely proportional to rs, a condition which also does
not contradict the continuity et~uation. Thus, ne~ the wa~ were
should occur a somewhat more rapid decrease in veloci%y along the ilif-
fuser than in the regions with rapid flow. ?{iththe velocity near the
w@l decreasing more rapidly, the direction of the component v, from
considerations of continuity, should be from the wall to the axis; that
is, the direction of a line of flow near the wall deviates from the ra-
dial direction inward. .

‘l’heangular deviation.of the lines of flow from the radial direc-
tions (ven~ small, of course, in absolute magnitude) near the wall
where the effect of the viscous friction is large may be com~arable
with the small divergence .a@e of the diffuser. In this case it is to
be expected that this deviation may affect the main turbulence of the
flow in which the mean velocity vectors deviate somewhat from the ge-
ometric radii. The problem of the deviations from the radiai direction
in part 111 of the present paper will be considered later.

It may be well, now, to proceed with the direct derivation of ‘&e
resistance formulas by the general method of considering the velocities
at the bounda~- of the laminar layer. The velocity distribution
u = f($) in the Uaminar lsyer is assnmed to be linear:

where y is the d.iste,ncefrom the wall.
keepi~ the first significant term in the

This formula corresponds to
development of the function
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., IJ = f(y)
..

in a series, a procedure which is entirely permissible in view of the
extremely small thickness of the layer. Substituting

y = r($o - ?9)= r$o(l - E)

and expressing
(

&)
through the frictional shear at the wall:

~ ) Y=o

()+
f. ~z‘Q

l=-=

by
—F—

y=o
(w r4pV r4V

gives

(29)

The thickness of the laminar layer is assumed to follow the weli-known
law of K&&n:

6
v

=a—

II
! where,

2
accordiW to K&m6nts asm.unption~ a is a universal constant.

1 The value 5 = Ex correspondj-~ to the edge of the layer will thenbe

..
.. .

—.

lAs K. K. Fediaevsky has ehown, the assumption of the constancy of”
-. a corresponds to the assumption of the constancy of the critical

Reynolds number computed for the thicknem of the layer. There is
therefore every reason to expect that in passing from the pipe to the

, diffuser the constant a does not appreciably change,
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.,.

The nondimensional velocity Q = ~ at the edge of the layer is ob-
tained from equation (29) . .’

.!, #.
,.

Ub b$o
P5=~=~(l-E*)=a

The equatio~s .
.“,

and

will be substituted in the formula for the velocity distribution (26).
First of all, to find x = x-x Corl”espundimgto - = C*, ap@y the.a~
proximate expression for the sg.uareroot as is always possibze because

Vr
of the extreme smallness of the”magnitude a —

M.
compared with unity.

There is obtained:

By proceeding similarly with the power of E* there is obtained

and

3 Davrx+e$31+__—
4 b+.

In substituting x = xX-
3 DaVr

in expression (2-6),the temn ~ -—— in CO*
4 bao~

parison with unity will be neglected.throughoutexcept, of course, the
term x-1. There is obtained: ,.



NACA ‘TiiNo. 1137 35

. .

The resistance ooefficien$‘and,theReynolds number axe introduced as was
done in the solution of the problem
with the case of the pipe, let

Cf =

and

Rm =

where R = INo is the local radius

the diffuser. This “gives

%
Vm=;:=

-A

of the flow in a pipe. In analogJ

‘o—..

WP’-—
2

%F
v

of the circular cross-sectionsof

vr vr v /’2

By substituti~ iq the preceding expression and’passing from hyp&bolic
functions to logarithms the resistance law for the diffuser is obtaineth

. .

.-

A
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where

A=

D=
the

——

(30)

-——
(1 + /2D + 1)(/=-/=) !

+/’m+llog-
- (/&-+ ;- lJ

1)(/m + /-56) ‘“
./

On passing from the diffuser to the straight pipe, that is, settirg
0, there is obtained on evaluating the indeterminate expression by
rule of L’Hospital:

where (31)

As may be seen, the form of the resistance expression for the diffuser
and that for the straight pipe is Identical. It is very interesting
that the diffuser parameter enters only into the makeup of the free
term A and has no effect whatever on the terms containing the resist-
ance coefficient and the Reynolds number. This is not entirely
unexpected, because the resistance formula results from the shape of
the velocity ~istribution clwe near the outer boundary of the hminar
layer, where the effect of the inertia forces is negligible and the
mixing length, as in the case of the straight piye, increases propor-
tionally to the Mstance from the wall.

The numerical value of the free term A usually is determined
experimentally for the pipe. As is known, the value of A is also-
lute, that is, ~ndeper~de.ntof the Reynolds number, and is of the order
of 4 to 2*1

lAccording to the tests of Nikuradse, A = 4.8$; according to the
present tests with the straight pipe A = 4.01.
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There is every reason to expect (since the form of the expression
the resistance is the sam as for the pipe) that the absoluteness

37

for
of A

extends also to the diffuser, while a variation is possible in the
magnitude of a which for different values of the parameter D will
be obtained as & solution of the transcen&ntal equation

A = f(c%,D) = constant

The circumstance that the diffuser pramter D, which t-es account
of the effect of the inertia forces, does not enter the variable terms
of the resistance formula leads to the conclusion that the form of the
expression is not due to the approximation used above for the inertia
integral. If it were possible to solve accurately the fundamental dif-
ferential equation, the same form of expression would be obtained for
the resistance formula.

The approximations assumefl~or th.$mixin~ length and inertia in-
te~ral show up or&y on the free term. I’orthis reason, no tar reaching
conclusions will be made with regard to the dependence of a on D 1
or physical ex@anation of Knis tiependencejparticularly since for
practical computations nGt a but A is required, which in any case
is obtained from experiment.

It is necessary to make one more remark with regard ho the resist-
ance formula. The Reynolds number enterinG

Rl~
Rem=—=

rOo tm =
v

r2v

is variable along the diffuser length. ~$~e
ever, according to the assumption of
the diffuser length:

To =Cf = -—

. ; pum2

radial

2fo r+-.—
2

r‘ptm

tb.eformula

to tm-
rv

friction coefficieilt,how-
flow should not vary over

2fo
n ——

P%2

This lack of correspondence is obtained as a result of the foregoing ‘
assumptions in considering the viscous friction at the wall which tis-
turbs the radiai character of the flow. The error thus obtained is
vanishingly small. l?or..smalldivergence an@es of the diffuser the
Reynolds number Rem varies so little over the diffuser that, Cf,

21t is seen, for example, since D = f(Re) that also a in the
diffuser will depend on the Reynolds number, that is, no longer “DO an

absolute constant.

._...-



38 NACA T14No. 1137

depending on the logmithm of Rem, undergoes quite-a negligible change.

11. EXJ?ERIIUNTAND COWARISON WTH THEORY

In order to check all the assumptions made and i’esv_ltsobtained in
the preceding part, a series of tests were carried out on two cor.ical
diffusers with divergence angles (angle hotween axis and Genereztorof
COXIO) Of 1° and 2°. In comparing the experimental with the theoretical
results it was assumed that the comparison of the velocity and jy’essun?
distributionswas of greatesk imp?tance. For tnjs reason the experi-
mer.taldetermination of’stlchsecondary i’MtOrS as the i’ric:lona fif+
tribufion over the cross section of’the diffuser, tlm.distribution of
the mixing len@h, and so forth! were entl~-ly omitted on the assump
tion that agreement or dis~reement between theory and experiment for
the main factors implies also tinecorresyondlng conditj.onfor the
secondary factora.

The diffusers on which
construction having sheets,

(a) Test Setup

the tests were conducted were of p~wood.
curved into conical segments, which-were

attached by wooden rings the internal diameters of wliichas far as
possible were determined by accurate computation. ‘IT@wooden rings
were conneczed to each other by stringers disposed over the generators
of the cone. The entry openinG of’the cone had a d%meter of 240 mil--
lineters and was cormected bj mearisof a traneitlon piece with the
cylindrical pipe previously in-~cst~jated(reference 1) having a lengih
or about W caiibers. The diffusers were tiech6 meters locg. Behind
the diffusers was Tlaced a 2“-metersection of a straight pipe havin~
the diameter of tke outlet section. This section was Iol@w~d by a
short accurate convergiw pipe that recor.ductedthe flew into tileyiye
of 240-millimeter diameter. The latter pipe wiih the aid of two elbows
was connected to the suqtion chamber. The inner surface of the diffuser
and of the transition lengths was covered with shellac. The entire a~
para-tuswas suspended fron the ceiling of a long passage of the lab-
oratory. The lines in the Ciiffustircross sections along which tie meen
velocity distribution was measured lay in the hor~zontal plane passing
through the axis of the ayparatug. The first section was located in
the center of the forward transition @L@~~. The dista.Qce x: in
meters, between the succeeding sections msasured from the fi~st is
given in table 1.

,-
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TABLEI

‘‘-t-‘“‘ ‘ ““
Sectton 3 2 34 4/5 h + 8’ 9 .10 M. 12 13

I

..
x 01 !2

‘ “H

2.2 2.G 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0

I —

In distributing the sections along the diffuser it was assumed that
over a certain portion beyond the transition pipe no typical diffuser
flow will be observed to which the ass~ptions made in part T were ap-
plicable. (2VQBthis portion there will be a gradual transitionfrom the
conditions of flow in the straight pipe tp the conditions of flow in the
diffuser; that is, there will be a kind of diffuser entry length
(Anlawfstrecke). On the has:.sQf this fact, the main sections 3 to 13
were placed in the midoe Fart of the diffuser. The test, as will be
shown, justified theee assvmptjons.

The veloci~ distributionswere measured in sections 3 to 23 with
the aid of the same pitot tube used ~n investigating the velocity dis-
tribution in the cylindrical pipe and the ssme coordinate apparatus
(reference 1). Since the openings, through which the stem of the tube
passed into the diffuser and cane out through the opposite ~ide, were
made along the normal to the inner surface of the diffuser, the tube
stem was slightly curved. It thus seems reasonable to assume that the
velocitiJdistribution was measured over the arcs of circles of greater
radiLls,approximately corresponding to the arcs measuring the angle ~.

To measure the static pressure distribution alcng the diffuser, the
usual system of brass tubes was younted along the botto?pstringer. The
tubes were placed 200 millimeters apart from section 1 almost.to the end
of the d~ffuser.

(b)Tests

T@ velocity distribution in the chosen sections of the d$ffuser
was measured for a single maximum discharge rate of air. The velocities
were measured in each section from wall to wall, in o~der to be able to
$@ge to some extent the a.x~alsuymmetryof the velocity profiles. The
points at which measurements or the velocity were made in each cross
section were more often near the wells than near the diffuser axie. In
testi~, two micromanometerswere read, one connected.with the pitot
tube (hv), and the other a control (hc) connecteo with a static

tube placed in the cylintiical pige ahead of the Mffuser. After trav-
ersing each section of the velocity pro$ile, the pitot tube was placed

kij,J
‘ .. —,-,, -..,,--,, ,.-. -,-,, ——. ——. ,., .,.,,. --.-,-, --, -.,.,..,. -,-------

—.
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on the diffuser SXIS and the air discharge
maximum with the aid of the iris diaphragm
rewiings were taken on the velocity (~)

eters, and the magnitude was computed:

%
A=F

c

lVACA~ NO. 1137

was varied from zero to the
at the chamber~. Simultaneous
and control (hc) mano~

(32)

which for each section was plotted as a function of hc, It l?8Sthu6

possible to compute the absolute value of the velocity at the diffuser
sxis as a function of the reading on the control manometer:

where .

288 patm
P = 0.123—.——

‘@(273 + t]

is the density of the air with corrections
and ‘tieatmospheric pressure;

sine of anGle of inclination
coefficient of manometer

coefficient of pitot Lube

on the tem~erature of the ati

of manometer tube and
respectively

density of s~irit in manometer

Instsmtaneous reading of two manometers, it was possible
to determine the velocity at
the velocity at the diffuser

any potnt of my section as a fraction of
axis in the same section:

/q
u
~’/ ~<
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In determining the veloclty distribution by this formula, near the
diffuser walls a oo~ction was made for the effect of the walls on the
readings of the pitot tube. It is known that the presence of a wall
near the stem of the tube gives rise to a certain increase in the ve-
locity between the stem of the tube end the wall, snd this leads to a
drop in the static pressure and res@.ts in an increase in the manometer
readings above the true values. The correction was applied by multi-
plying the radtoal on the right eide of this formula by the correction
coefficient !. The dependence of this coefficient on the distance Y
from the wall to the center of tinefront opening of the tube is shown
on figwe 3. Thi@ curve was obtained from tests in the straight pipe
(reference 1) where ‘theveloc?.tydistribution near the yall was measured
both by the pito’ttube and the total press~e ticro nozzle, on the rea+
ings of ~~hichthe effect of the wall was vanish3ngly small. The test
points on figure 3 were obtained for various Reynolds numbers, As may
be seen, with increasing distance from the wall the values of ~ raw
idly approach unity.

In addition to the correction near the wall, a correction was made
for the change in diffuser cross section caused by the stem of the tube
in determining the absolute value of the velocity ~ on the diffuser

axis. This correction coefficient p was determined as:

s - Smp
IJ= —..-—

s

2
where S = nr2do circular area cf the diff’usercross section,

%p = 2rl$od yar’tof diffuser cross section taken UT by stem of’tube

(d diameter of tube). The justificationfor a.yplyin~the correction
by this method is given in a paper on tests on a pipe (reference l).

The distribution of the velocity ratio ~ for the various sec-
u~

ticns of the diffusers of 1° and 2° is shown in figures 4 and 5, where
the magnitude

.
is laid off on the axis of abscissas. The values z and Zo, the

lengths of the arcs of the circles having the@ center at the vertex of
the cone and passi~ through each sectton, were read off directW with
the coordinate apyaratus by divisions c~ied on the stem of the pitot



I I I

42 iU.CAT1flNo. Zij’-

tube. On these figures the velcoity curves are shifted up~,rd with re--
spect to each other. ~ae dots and c:.rclesdencte the ~aSUreWntS at
the right end left halves of the velocity profile.

In examining these curves there is observed first of all lhat: (1)
The symmetrg of the profile with respect to a vertical plane is suffi-
ciently good (the dots and circles are not very far removed fi-~nthe
mean curve),(2) lineassumption in part I on the similarity of the ve-
locit>-profiles for seckions 3 to 13 is observed %0 be well sat~sfied.
An excepuion occurs in the case of the 1° diffuser for fiecticm5, which,
for an unexpected reason, drops out of the general series,

Of interest on the above m.uwes are tinevelocity distributions for
sections 1 and 2. The latter distributions (especiallyfor the 2° djf-
fuser) clearly indicate the trzsm:tion region from the straight pipe to
the diffuser. Eere, it should be remarked that the velocity distribut-
ion in section 1 is not characteristic for the >~pe a~d is also
transitional, since it must he supposed that the effect of the diffuser
extends somewhat ahead into the ~iye. On the basis of the assumption
that the shape of the velocity profile is entirely determined by the
static pressure gradient, it may be said that the region of influence
of the diffuser on the piTe will extend in~o the latter up to a point
where the pressure ~radient in magnitude and sign w~.11agree Wl&& the
corresponding value for the pipe.

After neasurlng the ve,locityprofiles over the dfllser sections,
pressure distribution measurements were carried out with the aid of tl!e
above-mentioned system of static tubes. T~~emeasurements were ~de for
five dischazzgerates for tie 1° d~.ffuserand ei~ht discharge rates for
tine2° diffuser.

The
pressure
&lstance
positive
verse to
Spect to

The

results are given on t’i~n~res6 and ‘~,-wherethe lowering in
in kilo~rams yer square meter is plotted as e,function of’the
from section 1. As may b~ seen, in both diff~.sersthere wa8 a
pressure gradien~. The static pressure d.~str~butiOIitrans-
tlnediffuser was also measured.- No press’uregradient with re-
3 was observed.. This complated the test yrogram.

(c) C!ineckingof Fundamental Assumptions

confirmation of the Tunt.amentalassumption made in constructing
the theory, namely, the assumption oi’radial flow %-illbe discussed
first. On applyi~” this assumption to the ec~uationof continuity, the
result (formula ~) that tileproduct ur~ ahoul? not be a function of r
was obtained. The values of’this -woiiuccon the diffuser axis where

u= Urn will be computed. In tables 2 and s are Siven the values of ~
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end r for both diffusers for m=imn discharge ra~j =d the Pr@ucts
are computed. The values of u~ for the varioue sections of each dif-
fuser, with the aid of the curve A.= f(hc)} was reduced to a single

reading of the control manometer, that iaj to a giW31e ~schwge rate.\

.;

TABti’lI.- VALUES OF r, ~ AND ~rz FOR 1° DIFII.HER

Sec- 1
tion, 3 415~6

II~:,15.7315.93
1 I

u~
m/see) I21.0 20.2

16.1316.33

19.9 19.75

umr
! I

5130~ 5190 5270

7 81 9 10 11 12 13

~~ ,.3

.-

16.53[16.73 16.93 37.13 17.33 17.53 17.73

l.}

—.

19.1 1.8.7 18.5 18.05 17.?0 17.34 16.9

,-

52251 5225 5310’ 53001 5320 5340 5310

TABIJ!lIII.- v&lXIESOF r, Um AND uIlr2 FOR 2° DIF~J~

i

1

9.2819,48:9.68 9.88~10.08h0.28110.4810.68‘1O.88

‘::7 ‘“--FR---NT

—.

17.1816.55\16.M 15.50,14.95\L4.503.3.66113.1712.63

1450 lXQ/ 15181 15151~1525
I II1540’l.?oo~1500 1500

!

For greater clearness the values of the product ~r2 are plotted

as a function of x in figures 8 and 9. As may be seen, the yroduct
~r2 does not remain constant but increases in a regular manner along

the axes of the diffusers. The regular character of the increase in
~r2 indicates that the obtained resuit is not due to experimental

ror but to a certain regular disturbance in the radial character of
flow that arises from the effect of the viscosity. The difference

er-

the
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between the maximum and minimum values of umr2 is, however, efficientl-
y small and does not exceed 4 percent for the 1° diffuser end 7 percent
for the 2° diffuser. me regularity of the increase in uWr2 is broken
only in the last sections of tile20 diffuser, where evidently some other
unaccounted-for effect enters. It is possible that the irre@arity at
these points may be due to some error in the test setup.

Thus the radiality of tke flow at the diffuser axi= (and therefo=
also over the entire region of’the flow) is satisfied only with a cer-
tain, though rather large, deqree of’approximation. A more detailed

discussion on the radialjty OF the flow will.be given in yar~ 111 of
this yayer. For the present, however, the obtained increasing values

2
umr = f(r) will be replaced.by m.eanzoonstantvalues (umr2)m. GB
figures 10 and 11 the values of {Umr )m are plotted,and the mean
values indicated for various discharge rabes for both diffusers.

Another method of ckecki.ngthe radiality
the increase in the static pressure along the
part the
eralized
the law

result was obtained that in the case
pressure ~ - Trr should vary along

(PG 1 - pG ‘:
P1=-T ~+\Plo “—)

r’ kr~ “

of the flow is to stuly
diffuser. In the first
of radial flow the gen-
the diffuser accordi~ to

(formula 8)

At the wall, that is, for { = 1, tklepulsations

(Trr= O) and pl = ~. Thus: in the case 01’the

foregoing law

a function of

determined by

This plot for

should tle down

correctnes~ of the

of Increase in gressure, there should in plotting jj as..
~ be obtained strai@t lines, the slope of ~~hichis
r
the value of G:

4 d;
G=-– -——

P d(r-4)
(33)

the two diffusers is shown on i’i~es 12 and 1~,. AS My
be seen,.the law expresse~ by formula (8) is excellently confirmed.

.

The ~arious straight lines on these f’i~uresccmresyond to the -~alues
(umr )m on the previous figures. For each etrai$ht line is indicated
the value of G determined by formula (33).

f

.
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In
made of

measuring the prestmre &istrSliition”For ,the2~ diffuser use was
a more ~improved.system of ‘manometer!.asconqyxredwith that umxi

for measurtng the pressure in the 1° diffuser. Because of this it’was
yossible in figure 13 to plot the test points directly, while in plot-
ting ~igure la the values of the pressure had to be taken from the
comparison curves (fig. 6). This ex@ains the Sreater scatter of the
points oqfi.gure 13 as compared with fQure $2.

.

On these curves the values OI? x correspcnxli~ to the ~ections at
which the velocity distributionwas determined are indicated below. It
is of interest that the yressure variation law is confirmed over a con-
siderabl:~greater length than the law of sjmilari~y of velocity ‘
Frofiiee, This should.also he the case since accordinE to equation
(11) the value of the ~nitud.e G ch~~acterizing the-
sure depends not dirsctly on the velocit,ydistribution
integral of this distribution which should not be very
change in the velocity profile.

(d) Check:ol the Velocity and Resistance

change in pres-
but on a certain
sensitive to a

Laws

On figures 1$ and 15 are given the comparison o.fthe experimental

and theoret-icalprofiles ‘— = f(~) of the veloc~~tiesdetermined by
Um

formula (26) for the msximum Reynolds numbre attainable.z The value
of tho diffuser parametei- D for the computations by formula (26) was
determine to a first approximationby the formula

where the value of 10 was computed with the aid of graphical integr&-

ticm of the ?geanexperimental velocity profile. After obtaiting the
theoretical profiles shown on figure 14 and 15, the value of D was
corrected ~. determining 10 from the computed theoret:[calprofiles.

The secon& approximation for D differed so slightly from the-first
that further approximations of the velocity profile seeinedsuperfluous.
The value of ~ enterin~ the fmmulafor D was determined as

. . ,“.
..——-— . . .— . . ..—

1
Note the transition here from the vqlues ~ - q to the values

u
— , detetining qm ‘according to the resistance law.,
%’

* —.—— .-,-,.,., .- .—
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from the derjved resistance law (30).,where t~e value OX the absolute
constants X and A, on the basic of tests wlkh cylindrical pi-yes,
were taken as

-~ = 0.434 ‘ , ,,, -
and

4.01’ ‘ ‘A=

The Reynolds number Rem was determined as the mean of ~he

Reynolds numbers . ,’..

~g 0% $o(~r2)m

R@m = ——————= -—-————
v w

over the fiiffiisersections.
tified by the fact that tine
practically had no effect on

The

Reynolds

For

l?or

final values of D

The posaibilit~ of this averaging was jus-
change in Rem along the diffuser
the values of Cf and ~.

and ~ for both diffusers for mean

numbers were O-c:aineda6:

the 1° dif~user Rem ~v = 178~ooo ~ = 26.65 D = 2.27

tile2° diffuser Rem av = 17’7,000 ~= 26.55 D = 5.56

According to figures 14 and 15 it may be stated that tiletheoretical
formula satisfactorilyagrees with the test results. Some deviation is
observed in tbe middle portion of the curve where the test points have
a tendency to drop below somewhat, The reason for this deviation must
be sou~ht.apparent~ iq the fact that the actual distribution of the
mixing lengtlnin the diffuser differs somewhat from the cubical parab-
ola ass~wed.

Tc illustrate the degree of accuracy of the solution of the fund&-
mental differential equation by approximating the
the ex~onential relation

inertia integral by

figures 16 and 17 are presented~ where the contjnuoue curve gives the
above integral and the points Give the results of computing I by
means of the graphical integration of’the obtained theoretical curve of
the velocity distribution, The discrepwcies between these values of
I are so small that it may be affirmed that the de~ree of accmacy of
the solu-tionof the fundamental differential equation by this approxi-
matf.onis sufficiently htgh.
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the velocity distribution. The discrepancies between these values-of
I are so small that it may be affir~d that the degree of acc~acy of
the solution of the fundamental differential equation by this approxi-
mation is sufficientlyhigh.

It is very unfortunate that formula (26) does not er~ble the an-
alytical computation of the values of the inertia integral, since the
problem reduces to incomputable quadrature. Otherwise by expressing
10 in terms of D by IMMUM of the above integration the dependence

of D oould be found only cm the Reynolds number and the divergerlce
angle of the diffuser.

As an illustration of formula (27) of the velocity distribution
for the straight pipe (zero diffuser), figure 18 shows the results of
the tests in the fitpeas given (reference 1) and, as maybe seen, foh
mula (27), for the values of X chosen on the bqsis of the resistance
law, is in excellent agreement with tinetest results. It is in-
teresting to note that tne curve representing forraula(2”[)lies very
near the curve drawn according to the ‘theoryof Mattioli, which until
now of all semiempirical theories best agrees with experiment. This
consideration is of great importance since formula (27) is extremely
simple; whereas the theory of Mattioli does not lead to any finite fo-
mula at all, and to draw the velocity distribution it is necessary to
carry out a graphical integration.

For checking the resistance formula in The umaal manner by com-
paring the theoretical and ex-perjmen~allaws of v.ariat~onof the
resistarrcecoefficient with the Re.:,moldanumber, it would have been
necess~ for to find the experineritalvalues of the frictional shear
at the diffuser wall. It was ooneidered illogical GO carry out the
above operation, since it would.then ‘benecessary again to make use of
the theoretical equation of motion tha~ gives the relation between the
friction, the inert”a forces, and the pressure gradjent. For this re~
son it was considered of greater interest to compare the theoret~.cal
value of the magnitude G, characterizing tim increase in static pres-
sure along the diffuser, with the corresponding test values obtained by
measuring the slo~es of the curves on figures 12 and 13.

The theoretical value of G may be obtained from equation (11):

1 ‘j=2t2mf 210-— ,
\ ‘oV2m

) (34)
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where ~ is no other than the value

of discharge of the fluid thro@h tie
Reynolds nuniber ‘

NACA.TM ib. Idj”(

(umr2)m,deyending on the rate

diffuser, that is, on the

By integrating the theoretical velocity profile, 10 is determined;

~ is determinedas a function o: the Reynolds number according to &

resistance formula. ,

Thin, expression (34) is the theoretical.dependence of G on the
Reynolds number while expression (33), which determines G by the
slopes of the test curvesj is tinecorresponding experimental dependence.

On figures 19 and 20 are given the clu.rvesof the theoretical and
experimental relations G = f(tm). As mzt]-be seen, in both cases the

test points lie below the theoretical curves, Part III of the present
paper will show more in detail tilereason for the obtained (not very
lar~e, it is true) discrepancies in the values of G.

In concluding this part, tinetheoretical curves of the friction
distribution transverse to and-along the diffuser are given. By formu3.a
(lo):

By substitution;according to expression (ll)j

there is oktained

According to the assumed approximation for the inertia integral,
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.*,

T r
—a e ;30
‘o

L-( ~-’’o)(!j+llll.

,, .. .

By substituting Jo = ?pz@o And introducing the dJffuser’~r~tir D
there-is obtained finally

T 1(_=grJ) 1- $)+1]

To -- ,
(35)

On i’igurs21 are constructed the curves ‘— = f[~), ac;ordi~, to
To

formula (35), for the diffusers and cylindrical p~le. It is intermti%
how such smalldiffuaerdiver~ences as 1° and 2 ~ which seem insig-
nificant at first sight$ affect ‘th~character of the friction distribu-
tion. As may be eeen, near & = 0.6 Me iocal frictional shear for
the 1° diffuser is approxiinately twice and for the 2° ctlffuserabout
four times the value for the strai~.t pipe.

On figures 22 and 23 are drawn the friction distributionsalong
the walls of the diffusara accordin&’to the law

f
To . .:

1“

for varicnm values of ~= (~r’)m. The values of f. is expressed

as

III. S01412CQNSIPERATION5WITE REGARD TO TEE DEVIATIONS

FROM TBX .RADIALFIQN ASWNl?TIOIT

It has e@eady been pointed out that the
of umr= alo~ the J.iffuseraxis indicates a
the assu?md radial flow, It is true that the
from the radial direction is extremely mall.

-.

nonconstancy or the valuse.
8ystiematicdeviation from
deviation of the flow
It is interesting,



however, to estimate to a first approximation what these deviations are
and their effect on certain final results.

Investigation of tinedeviation from,the radiality is poseible by
considering the s6%all~d “secondary flows,’:that is, the transverse
components v of the mean velocity directed along,the circular arcs
measuring the angles 0. The direct measurement of”these velocities
is, of course, impossible.

An attempt was made to use the continuity equation connecting the
velocities v with the velocities u by analyzing with its aid the
test curves of the velocity distribution. This atteupt did not, how-
ever, ie.adto any good.results, for j-twas found that the accuracy of
the test for this purpose wa~ insufficient. Some conclusions may, how-
ever, he dra%m fro~ the obtained expe~inentai law of the variation oi-
the magnitude u@- alo~ the axis.

.,

It is assumed that at any point M with coordinates ~ znd r
within the diffuser there are two component velocities u and v
(fiG. 2J). By adding u, and v vectorially there is o-otainedthe
modulus of the resultant velocity

/

—.
2

w= U2+ v

By prolongf.ngthe directionof w to its intersectionwith the diffuser
sxis at point N, the yoint N may be approximately considered as a
certain fictitious source producing a radial velocity field near point
M. The distance of this fictitious source is denoted from the vertex
of the cone by ON = Ar. By proceeding in the same way for each point
witnin the diffuser, various values will naturally be obtained fur .&.
In tinegeneral case~

Ar = f(r, ~: u, v)

The extent by which AT differs from zero wiil characterize the degree
of nonradiality of’the true motion.

This function is expressed through
. . and the values of’the velocities. From

tained (fiS, 24)

791= 0 + tarl--~

—

the coordinates of the point
triangle Ohm there is ob-

V

u
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On account of the mallne$s of v it may be ass-d that
*a-l ~ *V-.

-. —.. .=.. -. Uu

Bearing in mind the small.nessof the angles, write

(r - flr)$~= ti

whence, combining with th~ above equation gives

v

‘3
cr =--

V
u+-

$3

(36)

The limit which this function approaches will be found as O approacbs
zero, that is, the value of this function on the axis of the diffuser:

IX)
r lim
1940 ()d

Arm = 3.imAr = -——-——-–– / ..-.
4--=0 Um+

From considerations of symmetry v = O on the diffuser axis. The limit

of the ratio ~ will he found by making use d the equation of con-
19

tinuit:~,which for the two velocity components in spherical coordinates,
will have the form:

Combining the first and third terms of the eqaation results in
..

~~ur2)+r&+r~=o

ar a+ 3

whence the required ratio



.,.

On passing tc the limit there is obtained:

On tie other

Substitutiw

sion for tine

NACA ~ EO . 1137

hand, from L‘Hospitalfs rule there is obtained:

(37)

(Yb)

this in expression (37) and solving the obtained expres-

li~t of ;. Gives:

Thus,

a(~r2)

(38)



NACA TM No. 1137 53

..

a(~2)
The value of the derivative — Is experimmtally determined from

ar—
the curves of figures 8 md 9. ~e curve y2 = f(r) shown on them

figure6 W, with a
linear function:

In determining

very large degree of accuracy, be represented as a

~2=ar+b

the valuee of a and b, use wa6 made of the .
method pf least sq~s, which for the given-case gives the generally
known formulae:

zUm ra 2 r 2
/.2 ~ *~m#

n n n n

2
u~ rs n 2 r 2 u~ r’

n
b n

n
a= _—

.2 2
;

r2 r z r’ 2
r ‘

n n n n

2
r n .x r n

n n

where the sums are taken for n readings of ~ = f(r). (In the given

case n is the number of Mffueer sections in which ~ was measurd )

For these cases there was obtained (for mXiMUM Reynolds numbers):

1° diffuser a . 88.6 square nmters yew Becond

b = 3769 cubic inters pm second

2° diffuser a = ~.6 square wters per second

b = 923.7 cubic meters per second

This leads to the computation formula:

Arm=— a . (39)
2um-+

From expression (Y?a) it is found that the first derivative of the curve
of trmsverse veloci~ distribution v with respect to 3 on the axis
will be:

dv

()dw ‘—$”9=0

Ill Imlmml III n lmmmml I 11, , , ,,.-.,—,,, ,. .,,. ,,, , ,,, . . . . . —-
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where the minus sign indicates that the velocities v are in the direc-
tion opposite to those shown on figure 2h, that is, from the wall to the
axis.

In tablesIV and Vare given the computed values of the function
& = f(r) according to formula (39). -

TABLEIV.- COMYUTATION OF Arm FOR 1° DI.EFUSER

Sec- 1
tion 3 ~ 5 6 7

(:)
~3,73 13.93 16.13 1~.33 16“53

I
%

m/see )21.0 20.2 19.9 19.75 19.1’

km -2.4L -2.55 -2.58 –2 .60 -2.70

i.

Ir

\ : r-

8 9 10 u

16.73 16.93 17.13 17.33

18.7 18.> ‘J8.05 17.70

-2.76--2.79–2.86--2.92

I

12
.—.

17 ● 53

17.34

-2.99

TABLE V’---COMPUTATZON OF Arm FOR 2° DIKFUSZR

I

1-Section I 3 4
.— I

13

17.73

16.9

-3.07

‘ (In) 8“% 9.06

I
I

18.3G 17.30

-2.00 -2.06

~
.—.

516
4

- t’

~

t

8

9.28 ~ g.48 9.68 ~ 9.83

i
17.18 ~ 16.65 16.18 15.20

-2.13 -2.2G -2.28 ‘--2● 40

I I——.—.-.

10.08
I
10.28

-2,49

.— .—

14.50

-2.57

The minus sign before the values of &m indicates that the fictitious

source is located not ahead of the vertex of the cone but behind it. As
may be seen, the values of @rm for the 1° diffuser constitute on the

average 16 to I-7percent of the values of r and for the ‘2° diffuser
23 to 25 percent o? the cor~esponding values of r. This, as may also
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be expected, is a consequence of tie fact that the deviation from ra-
diality for the 2° diffuser is greater than for the 1° diffuser.

Moreover, it is seen that &m v~ies over the diffuser length.
tie variations of ~, it is t~e, are not large in comparison with
r and constitute over the entire range investigated 3.5 to k percent
for the 1° dfffuser and 9.5 to 6.7 percent for the 2° diffuser.
The latter circumstance makes it possible to assume approximately that
near the axis flow msy actually be thought of as originating at the
fictitious source behind the cone vertices at the pan distances

Gm= -2.T3 for the 1° diffuser
and

~-$ = -2.27 for the 2° diffuser

Since the true nonradial I1OW near the axis is approximately replaced
by a fictitious radial flow originating at the second source, the equa-
tion of continuity valid for radial flow may be applied to it; that
is, write

whence

um(r-Zm~ = ~= constant (40)

The correctness of this expression is readily proved by drawing curves
similar to those of figures 8, 9, 10, and j.1,the values ~(r -Arm)2
being laid off along the axis of ordinates. These curves are given on
figures 25 and 25, On comparing with tihose”offigures 10 and 11, it
would seem that the constancy of ~ detezvninedby formula (40) is

considerably better satisfied than w~tinouttaking t~ displacement of
the source into account. In drawi~ these curves f~~ was considered
as independent of the velocity on the diffuser axis, that is, independ-
ent of the Reynolde number. This evidently corresponds with the facts,
sinae in determirdng Arm, formula (38), both the numerator and the
denominatormey with a very large approximation be assumed proportional
to the velocity ~.

For st3.11gwzter assurance as regards the po~sibility of rep-
resenting the n~ailial flow as a nwliel flow originating from a
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fictitious source, E& was determined by still another method. Let

it be assured that there is give: a test distribution along the dif—_
fuser axis of the nmgnitude ~ . It mqy be asked what incremmnt Arm

must be given to r in order that the value of the product

Um(r - =)2

?.

will deviate least from any constant values for each
Reynolds number. The statement of the problem,in this form leads to
finding a minimum of the j%znction:

where the first part represents the sum of the sq~s of the deviations

of the values ~Um(r - X&) 2 from the mean then for n readings. Re-

moving parentheses, differentiatin& with respect to =., and equating
do to zero yields, after transforming the cubic equation in =m:—
d Arm

-’x”~’r’-+v’xm’=”
n n n

The computations according to this equation, conducted with very great
accuracy, gave for the diffusers for ~imum discharge rate the roots:

.—
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1° diffuser ~n = -2.44 meters

tie Good agreement of the, obtained, values of ~m w$th those computed
from the continuity equation very obviously indicates the acceptability
of all the fcregoing assumptions with regard to M.

It isvew interesting to inquire whether the results of the pres-
ent investigation conducted for the region near the diffuser may be
extended to the entire region of flow in the diffuser, assuming, of
course, in the general ease .& = f($). That Ar necessarily must
depend on $ follows fdcnnits very def~.nition.Thus, for example, on
the oasis of exp~ssion (36) at the wall, that is, for ~ = 00 it

it follows that:

where

since on ‘thebasis of’the equation of continuity

v-+-o v-?-o

while the valve of h— at the wall is, of course? not equal to zero.
,> Thus, &
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The function .
It should increase

& =.f(0),-~~viden~. should be of
sharply over the thiclmess of the

NACA ~No. 2.137

the following form:
lsminar sublayer

turbs the radlality of the flow), &d attain somewhe= near the edge of
the laminqr sublayer-a maxi~ followed by a smooth *o$ in the d$.zyc-
tion toward the diffuser’ axis to the fcmegoing numerical values.

The possibility of representing the entire flow in the diffuber
as radial with displaced source has, in the Writerts opinion, a certain
practical value. Zt is possible tkh~s,”with a very high degree of ap-
proximation, tdsing for the continuity equation the expression.

.! g%(+),]=” .
to--considerthe phenomenon as subject tQ the equations of motion appli-
cable to the radial Now but substitute in them throughout r - Ar in
place of r. Thus there may be written instead of formula (6)

apl
G=~—-—— (r - Lr)’

p a(r-tm)

and

f = T(r - AZ-)4

In’place of expression (8) there is obtained:

1._ ;*;_... 1
pl - Plo

(r - h)’ (r - Ar)04

(’6’ )

‘1
i

(8’)
..,

Expressions (33) and (34) detetini~
values of G becom?, respectively,

the experimental and theoretical

(33’)

“, ‘
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These
sti11

G=2..

f’~rmul~s were
retaining the

[(
/ \2 “-]2

[ 1
-~m) I ,_210-—-%%r. ~ 1 (34’)

J ‘(9
0% -

written for the axis of the diffuser where Ar = ~m ,
Previously made ass~tion that

An attempt will be made to ~erlfy whether tbe agreement of the
theore~ical ~d experimental values o+ G is improved by the correc–
tion for the nonradialtty according to formulas (33’) and (34t). On
figures 27 and.28, analoGous to figures 12 and 13, are &awn the cmes

On iY.Gures29 and 30,a comparison is made between the theoretical
and experimental valnes ol- G determined b.]formulas (33t) and (3~1).
As may be seen, coupari~ these curves with the previous figures 19 and

20, it may be found that alihouGh the correction ~1~ gave excellent

results for the 1° diftlaser,the test points for the 2° diffuser lie
on the other side of the theoretical curve and at a greater distance
than on figure 2@.

It would seem that it is not ~lfficult to establish the reason for
the result for the 2° diffuser. Up to now it has been assumed that the
gradient of Trr alon~ r is neg-ligiblei.ncomparison with the cor-
responding gradient of p, and this perdtted consideration of the
value of G as independent of ~. Hvidently, altb-oughfcr the 1° diff-
user this ne@ect was justifiable;for the 2° diffuser: where the
intensity of the turbulence fluctuations shoulflbe h~gher, it is neces-
sary to introduce a correction for ‘rr which is, of course, a ihnc-
tion or both $ arkl r. The theory is as yet wnable to contribute
anything in this direction.

,,,, ,, ...... .,,,,.-, ,.,,,.,... . ,,,, ,., .,,,-..,——, ..-.,..! .! m ! I . . . . . . . . . . .
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CONCLUSIONS

The theoretical and.test results presented on the problem of the
tur?mlent motion in conical diffusers, are, of course, to a large ex-
tent approximate. The obtained satisfactory agreement between the
theoretical and the test results is a consequence of the smallness of
the divergence angles of the diffusers investigated. Undoubtedly, with
further increase jn the divergence the effect of the secondary flows
will show up to an increasingly Qreater extent and finally will lead to
separation of the flow. The investigation of a separated flow in the
diffuser is of great theoretical and practical interest. ‘l%eredoes
net as yet ap~ear any way leading to the solution of this problem in
the full sense of the word: that ~s, a solution which is self-contained
with respect to the boundazy conditions. In the solution of such a
proble?n.furtherdeveloyrnentof this method of considering the flow as
emanating from a fictitious source may be of value.

Noted here are a few of the most important conclusion drawn from
the yresent investigation:

1. The assumption made at the beginning of the investigation of
the radiality of the flow holds true tc a satisfactorq~degree for both
diffusers investigated..

2. The assumption of the absolute character of the curve of mixing
length for the straight pipe and diffusers and the representation of
this curve by a cubical parabola give Good agreement of the obtained
velocity profiles with experiment,

3. The resistance foimla for the diffusers is identical with that
for the pipe.

4. The values of the absolute turkuience constants X and A in
the resistance formula detemined on the basis of tests on the straight
pipe are applicable also to diffusers, and this confirms the absolute
character of the constants.

5. The approximate representation of the acutally nonradial flow
in a diffuser by a radial flow originating from a fictitious source
gives the necessary correction in computing the veiocity drop along tk
axes of the 1° and 2° diffusers and in computi~~ the pressure drop
along the 1° diffuser. In computing the pressure drop for the 2°
diffuser, less fav~sable results were obtained because sufficient ac-
count was not taken of’the magnilmde connecting the normal component
of the turbulent stresses with the gradient along the diffuser. This
magnitude cannot as yet be theoreticallyobtained.
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h conclusion, the writer w$shee to express his deep appreciation
t~ P. E. Kuryatnikov for ass$wting in the tests and computations in
comection with--thepresent paper.

Trex@ationby S. Reiss:
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Figure 210- Friction distribution across the straight pip
and diffusers according to the formula

To

.06~ — — - ~ ~ (~’&’)m~ _

.04-
~
— = ~ —-

— 5260
I “4$70

.02
-%%

‘ 36XI

4

2 2.4 2.8 3,2 3.6 %

Figure 220- Distribution of the frictional shear along the
wall of the 1° diffuser for various values of

(umr2 )mo



74 NACA ~ No. 11.37

.081 I I I I 1 I I I I 1

.041’=&E

To

.06

1

I 1 I““’~%::$g
2 2a4 2.8 3.2 3.6

Figure 23.: Distribution of the fricti~nal shear along
the wall of the 2° diffuser for various values

of (umr2)m,

.

—-— .—

Figdre 24. - Construction of “fictitious source” in the
diffuser.

–2r-Am,
I [ 1,

7000 ,

1 I

c . “ u L ‘~ = 7120

c n A ,. n
Y T Y T Y tm = 6330

w 1 A f* A A w “ tm = 5690

t

\ ‘~ = 49!53

4ooo~
n

Y 1- f Y w Y w ~= 4250

3000 .
2.0 2,4 2.8 3.2 3.6 4.0 * .07

Figure 25.- Plot of product um(r-=m)2 as a function

of x for Gm=– 2.75 m for 1° diffuser.



N&2A TM No. 1137 7.5

1200~-.—’ I I I I
,–-0++*- ++ ‘%

~..j—o
,0 tm = 1135

~ J_+_J_d1OOOLJ---- -L_.-L+_d
. ● 2.8 ● xm

Figure 26c- Plot of product Um (r-~m)z as a function gf
x for A—rm = - 2.27’ m for 2° diffuser.

400

lGGO 15Q0 2000 tm

Figure ZO-- Dependence of G =-~ dp
Oa

P dC(r_~m)-4J
tm =

2
un( r— Ziiz) -for 2° diffuser for ~Zm=- 2.27 i~-



NACA ~ No. 1137

--rT_3P

. . .

. ~-:+ “

54-

38 —.-

~

34 -—

22

–t-

18
.04 .06 .08 ● 10 1 x 104

T–Gm)+

l?i~ur~ 27.– Pressure distribution along 10 diffuser ,

[

1
P=f

~1
f or

(r-fire)
Gra = – 2.75 El.

J-



NACA TM No. 1137 77

,-

‘ i.

s

P= f [7;–_L----

1
for L—rm = - 2?2.7 x,

–A—r Tfi)4



-—>. {’
.—

.
p

,-

;

,’,

,,

.


